
Airflow and Acoustic Research and Development Study of VAV Box

This Laboratory is accredited by the National Association of Testing Authorities, Australia. The results reported herein have been determined in accordance with the terms of accreditation, and shall not be reproduced except in full.

N.A.T.A. Report No. 303252-1

Prepared by Vipac Engineers & Scientists Ltd March, 2002

DOCUMENT CONTROL FORM

Airflow And Acoustic Research And Development Study of VAV Box

FILE:	REPORT CODE:
ZD303252-1.doc	MA 77
PREPARED FOR:	PREPARED BY:
Asli Mechanical Sdn. Bhd.	Vipac Engineers & Scientists Ltd.,
No. 2, Jalan Kenari 10, Victorian Technology Centre,	
Bandar Puchong Jaya	275 Normanby Road,
Off Jalan Puchong, 47100 Puchong,	Port Melbourne VIC. 3207
Selangor Darul Ehsan, Malaysia	AUSTRALIA
Contact: Mr Walter Wong	
Phone: 603 8075 4933	Phone: (03) 9647-9700
Fax: 603 8075 4911	Fax: (03) 9646-4370

AUTHOR:	Acces	18/03/2002
		18/03/2002
	Zarko Drinic	Date:
	Project Engineer	
REVIEWED BY:	the flint	18/3/02
	Michael Smith	Date:
	N.A.T.A. Signatory	
REVISION HISTORY:		
Issue No.	Date Issued	Reason/Comments
0	March, 2002	Original
DISTRIBUTION:		
This is Copy No	Issue No.	Location
1	0	Asli Mechanical Sdn. Bhd.
2	0	Project File
3	0	Vipac Melbourne Library
		-
KEY WORDS:	VAV Box	

TABLE OF CONTENTS

DOCU	UMENT CONTROL FORM	2
1.0	INTRODUCTION	4
2.0	UNITS UNDER TEST	4
3.0	APPLICABLE STANDARDS	8
4.0	TEST SET UP AND PROCEDURE	8
5.0	INSTRUMENTATION	9
6.0	ORDERS OF ACCURACY	9
7.0	RESULTS	10

1.0 INTRODUCTION

This report presents the results of acoustic and airflow development tests carried out on VAV Box supplied by ASLI Mechanical Sdn. Bhd., as described below.

This report is issued as a NATA certified report under the terms of Vipac's NATA accreditation No's 1163 and 1506.

2.0 UNITS UNDER TEST

Figure 1 below shows a schematic of the VAV Box, with detail of fundamental dimensions. All dimensions are detailed in Table 1 below.

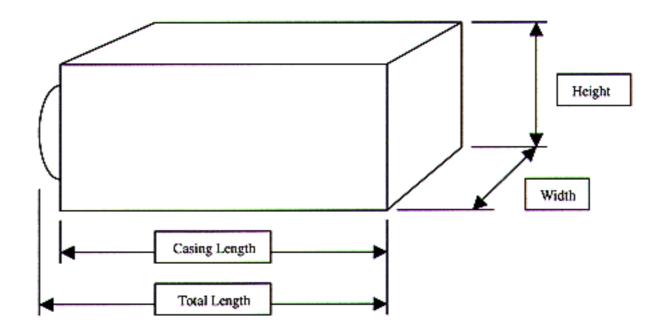


Figure 1: Schematic of the VAV Box

Table 1 : Description of Units Under Test

Size	Inlet Diameter (mm)	Outlet Dimensions Width x Height (mm)	Casing Length (mm)	Total Length (mm)	
Α	250	360 x 320	395	405	

l.doc

Photographs of the test sample are shown in Figures 2 and 3.

Figure 4 shows the quadrant type mechanism used to fix the damper blade position, with graduations to enable measurement of damper blade angle (from horizontal) for each test condition.

Figure 5 shows the damper blade in the fully closed position (for the closed blade leakage test), and Figure 6 shows the blade partially open.

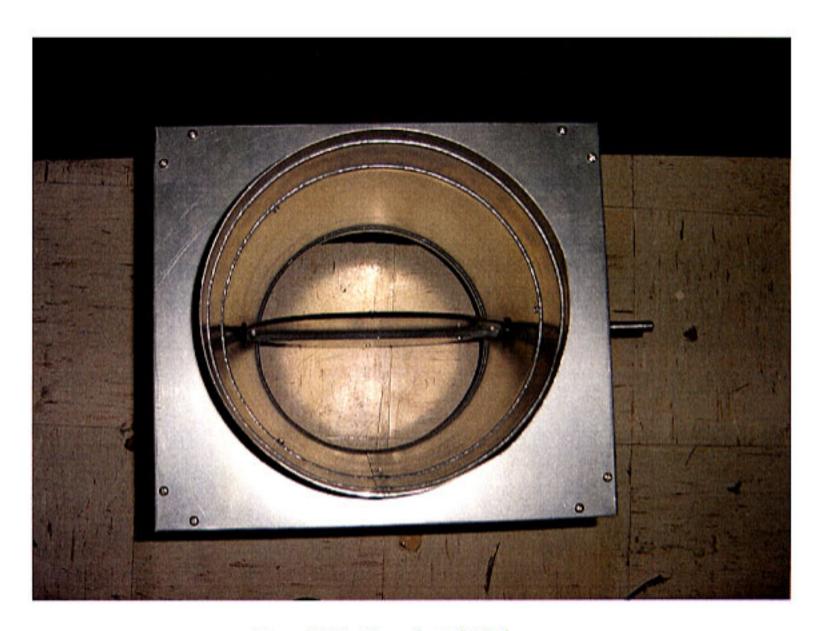


Figure 2: Test Sample, Inlet Side

Figure 3: Test Sample, Outlet Side

Figure 4: Damper Blade Mechanism

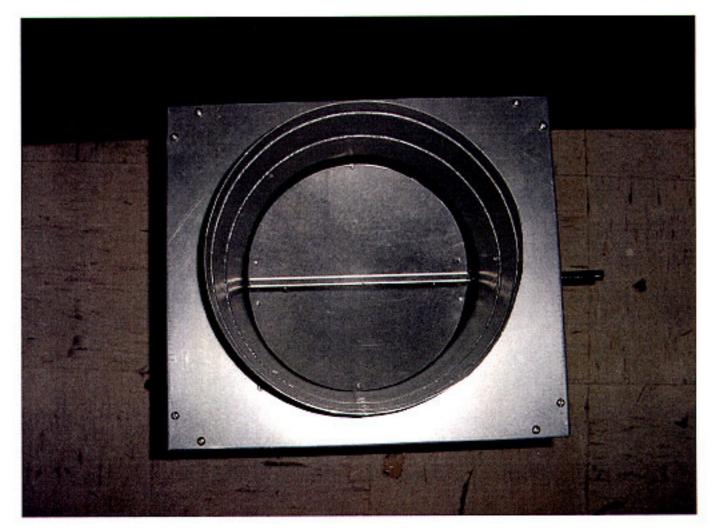


Figure 5: Damper Blade Fully Closed

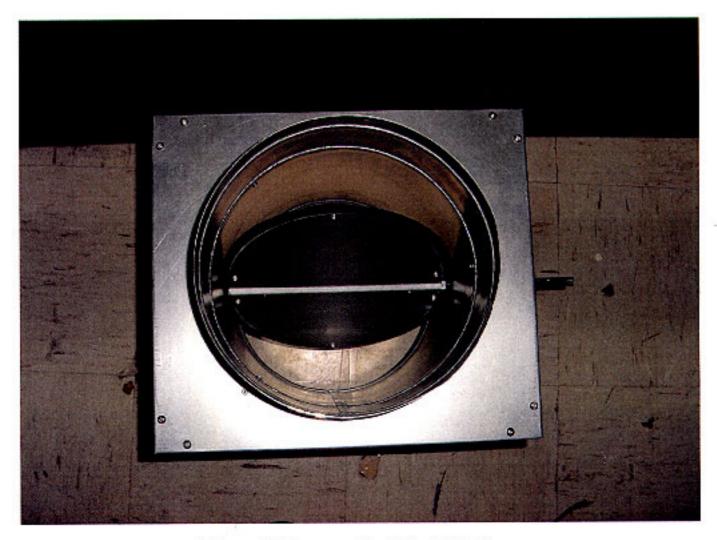


Figure 6: Damper Blade Partially Open

A

3.0 APPLICABLE STANDARDS

The test unit was tested for both radiated and discharge noise at a range of flow conditions, as shown on the Test Certificate.

The test set up was in accordance with ANSI/ASHRAE 130-1996 ("Methods of Testing for Rating Ducted Air Terminals Units") for radiated and discharge sound power determination.

The test set up was in accordance with ISO 7244 ("Air Distribution and Air Diffusion – Aerodynamics Testing of Dampers and Valves") for casing leakage and closed blade leakage determination.

Acoustic measurements were performed in accordance with Australian Standard 1217.2-1985. "Acoustic - Determination of Sound Power Levels of Noise Sources Part 2 - Precision Methods for Broad-Band Sources in Reverberation Rooms".

4.0 TEST SET UP AND PROCEDURE

The Unit under test was set up in the Vipac Air Distribution Test Chambers (Reverberation Rooms 1 and 2) and connected to a quiet air supply.

The unit was supplied with ambient temperature air at the specified airflows. The environmental test conditions in the reverberation chamber varied for each test within the following ranges:

Test Air Temperature 17 degrees $C \pm 2.0$ degree C

Room Air Temperature 19 degrees C ± 2.0 degree C

Barometric Pressure 1055 millibar ± 5 millibar

Relative Humidity $60 \pm 10\%$

Air flow rates were measured using orifice plate located upstream of the fan under test. Static pressure drop was recorded using 4 manifolded pressure tappings located upstream of the VAV Box under test. Figure 7 shows an indicative schematic of the laboratory set up.

Radiated noise was measured in Reverberation Room 1 and Discharge noise was measured in Reverberation Room 2.

Following calibration checks, sound pressure levels were measured and converted to sound power levels using the comparison method of AS1217.2 (ie. using a reference sound source of known Sound Power to determine room correction).

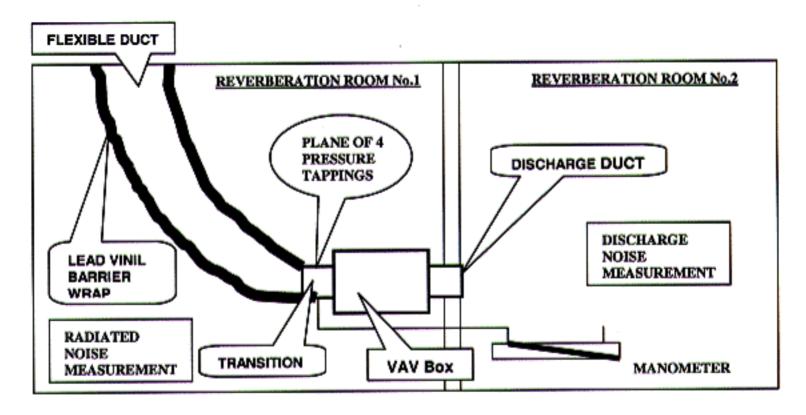


Figure 7: Schematic of Laboratory Set Up

5.0 INSTRUMENTATION

INSTRUMENT	MAKE & MODEL	CALIBRATION	SERIAL NO.		
		BY	DATE		
Sound Level Meter	LD2900	Vipac	May 2001	A0316	
Microphone	B&K 4145	Vipac	May 2001	25415619	
Acoustic Calibrator	LD CA250	Vipac	August 2001	860700	
Sound Power Reference Source	Pope	Vipac	May 2001	3172	
Manometers (2)	Airflow Developments Type 504	Gas Technology Services	June 2001	36862 PM6-168	
Orifice Plates	Vipac	Vipac	May 2001		
Thermometer	Digital T200KC		-		

6.0 ORDERS OF ACCURACY

Sound Pressure Level:	Octave Band Centre	Standard Deviation (1)
	Frequency (Hz)	(dB)
	125	<u>+</u> 3.0
	250	<u>+</u> 2.0
	500 to 4000	<u>+</u> 1.5
	8000	<u>+</u> 3.0

Pressure Drop:

± 5% or 0.5 Pa whichever is greater

Airflow:

± 5% or 10 l/s whichever is greater

7.0 RESULTS

The results obtained are shown in the attached Test Certificates.

The leakage test results are shown in Appendix A.

Report Prepared by:

VIPAC ENGINEERS AND SCIENTISTS LTD.

ZARKO DRINIC

PROJECT ENGINEER

MICHAEL SMITH
N.A.T.A. SIGNATORY

TEST CERTIFICATE - No.1

ACOUSTIC AND AIRFLOW PERFORMANCE TEST OF AIR TERMINALS

SUPPLIED BY:

ASLI MECHANICAL SDN. BHD.

TESTED BY:

VIPAC ENGINEERS & SCIENTISTS LTD

TEST ENGINEER: ZARKO DRINIC

TEST DATE: CLIENT:

14 / 03 / 2002 ASLI MECHANICAL SDN. BHD.

UNIT:

Single Duct Air Terminal Size A, Φ 250 mm inlet

RADIATED SOUND POWER LEVELS

TE	ST CONDITIONS			NO. OF REAL PROPERTY.	L, dB re RE FREQ			
Qs(l/s)	% of Rated Flow	125	250	500	1000	2000	4000	8000
125Pa PRE:	SSURE DROP							
318	25%	54.3	52.3	43.2	39.3	30.8	<22.5	<19.7
448	50%	57.5	53.3	48.9	45.5	37.8	31.5	<21.6
542	75%	60.6	56.8	53.3	50.5	43.7	37.2	25.0
637	100%	61.5	57.8	56.6	54.0	48.4	42.6	31.7
375Pa PRE	SSURE DROP							
318	25%	58.7	57.3	54.3	46.2	39.2	33.0	<23.0
448	50%	63.3	61.2	56.5	49.8	42.5	35.9	25.1
542	75%	65.5	63.5	58.8	52.8	46.5	40.5	29.0
637	100%	66.7	64.5	60.5	56.6	50.0	44.0	33.2
750Pa PRE	SSURE DROP							
318	25%	59.5	59.2	56.1	51.6	47.6	40.0	32.1
448	50%	65.0	63.9	59.8	54.2	49.8	42.6	33.5
542	75%	68.1	66.8	60.7	56.3	52.2	44.6	35.1
637	100%	69.9	68.2	62.3	58.0	54.2	47.4	41.8

LEGEND

Air Flow Rate (I/s)

Insufficient margin above background noise to allow accurate determination

Zarko Drinic

PROJECT ENGINEER

Michael Smith

N.A.T.A. SIGNATORY

This laboratory is accredited by the National Association of Testing Authorities, Australia.

The tests reported herein have been performed in accordance with its terms of accreditation. This document shall not be reproduced except in full.

TEST CERTIFICATE - No.2

ACOUSTIC AND AIRFLOW PERFORMANCE TEST OF AIR TERMINALS

SUPPLIED BY:

ASLI MECHANICAL SDN. BHD.

TESTED BY:

VIPAC ENGINEERS & SCIENTISTS LTD

TEST ENGINEER: ZARKO DRINIC

TEST DATE:

14/03/2002

CLIENT: UNIT:

ASLI MECHANICAL SDN. BHD.

Single Duct Air Terminal

Size A, Φ250 mm inlet

DISCHARGE SOUND POWER LEVELS

TE	ST CONDITIONS			THE RESERVE OF THE PARTY OF THE	L, dB re		(Hz)	
Qs(l/s)	% of Rated Flow	125	250	500	1000	2000	4000	8000
125Pa PRE	SSURE DROP							
318	25%	57.7	56.8	51.2	48.3	46.7	42.0	35.5
448	50%	58.9	59.1	53.9	52.3	49.1	44.9	37.8
542	75%	61.0	61.4	55.2	53.4	50.2	45.6	38.6
637	100%	65.0	66.3	61.0	57.6	54.3	52.7	44.5
375Pa PRE	SSURE DROP							
318	25%	64.1	67.3	63.3	60.5	57.0	56.5	49.5
448	50%	65.0	69.1	63.9	61.0	57.6	57.1	50.5
542	75%	66.7	70.4	64.8	62.1	59.3	58.0	51.4
637	100%	67.7	72.0	65.9	63.6	60.1	58.9	52.1
700Pa PRE	SSURE DROP							
318	25%	67.5	71.1	66.1	68.0	65.6	63.9	59.6
448	50%	70.0	73.3	67.6	68.6	66.9	65.7	60.0
542	75%	72.5	74.6	69.0	69.4	67.3	66.5	60.7
637	100%	77.4	75.4	71.7	72.2	69.8	68.0	62.8

LEGEND

Qs

Air Flow Rate (1/s)

Insufficient margin above background noise to allow accurate determination

Zarko Drinic

PROJECT ENGINEER

Michael Smith

N.A.T.A. SIGNATORY

This laboratory is accredited by the National Association of Testing Authorities, Australia.

The tests reported herein have been performed in accordance with its terms of accreditation. This document shall not be reproduced except in full.

APPENDIX A

LEAKAGE TEST RESULTS

A

@ZD303252-1.doc

CLOSED BLADE LEAKAGE

Size	Inlet Diameter (mm)	Pressure Drop (Pa)	Leakage (l/s)
		125	4
A	Ø250	375	9
		750	13

CASING LEAKAGE

Size	Inlet Diameter (mm)	Pressure Drop (Pa)	Leakage (l/s)
	A Ø250	125	4
A		375	9
		750	12